Simulated annealing least squares twin support vector machine (SA-LSTSVM) for pattern classification
نویسندگان
چکیده
منابع مشابه
Simulated annealing least squares twin support vector machine (SA-LSTSVM) for pattern classification
LSTSVM is a relatively new version of SVM based on nonparallel twin hyperplanes. Although, LSTSVM is an extremely efficient and fast algorithm for binary classification, its parameters depend on the nature of the problem. Problem dependent parameters make the process of tuning the algorithm with best values for parameters very difficult, which affects the accuracy of the algorithm. Simulated An...
متن کاملMulticlass Least Squares Twin Support Vector Machine for Pattern Classification
This paper proposes a Multiclass Least Squares Twin Support Vector Machine (MLSTSVM) classifier for multi-class classification problems. The formulation of MLSTSVM is obtained by extending the formulation of recently proposed binary Least Squares Twin Support Vector Machine (LSTSVM) classifier. For M-class classification problem, the proposed classifier seeks M-non parallel hyper-planes, one fo...
متن کاملLeast Squares Twin Support Vector Machine for Multi-Class Classification
Twin support vector machine (TWSVM) was initially designed for binary classification. However, real-world problems often require the discrimination more than two categories. To tackle multi-class classification problem, in this paper, a multiple least squares twin support vector machine is proposed. Our Multi-LSTSVM solves K quadratic programming problems (QPPs) to obtain K hyperplanes, each pr...
متن کاملLeast Squares Support Vector Machine for Constitutive Modeling of Clay
Constitutive modeling of clay is an important research in geotechnical engineering. It is difficult to use precise mathematical expressions to approximate stress-strain relationship of clay. Artificial neural network (ANN) and support vector machine (SVM) have been successfully used in constitutive modeling of clay. However, generalization ability of ANN has some limitations, and application of...
متن کاملFeature selection for least squares projection twin support vector machine
In this paper, we propose a new feature selection approach for the recently proposed Least Squares Projection Twin Support Vector Machine (LSPTSVM) for binary classification. 1-norm is used in our feature selection objective so that only non-zero elements in weight vectors will be chosen as selected features. Also, the Tikhonov regularization term is incorporated to the objective of our approac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Soft Computing
سال: 2016
ISSN: 1432-7643,1433-7479
DOI: 10.1007/s00500-016-2067-4